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ABSTRACT 
 

Intuitionistic Fuzzy Hypergraphs (IFHG) are those in which the hypernodes are having membership and non 

membership degrees , so also the hyperedges. The hypernodes with high membership degrees are more relevant 

with respect to the hypergraph. Likewise the hyperedges with high membership degrees are more important. 

The purpose of this work is to define algebraic operations like union, intersection and complement of 

morphological dilation operation on sub hypergraphs of IFHG. De Morgan’s law is also applied to IFHG 

provided the sub hypergraphs considered are having common edge(s). 

Keywords : Intuitionistic Fuzzy Hypergraph, Morphology, Dilation. 

 

I. INTRODUCTION 

 

Intuitionistic Fuzzy Sets (IFS) [1] were introduced in 

1999, where a non membership degree is also 

attached with every fuzzy member. A list of open 

problems [2] using IFS were also discussed. They 

include constructing an axiomatic system of IFS, 

extension of IFS modal operators, norm distance, 

matrices, developing statistical and probabilistic tools 

for IFS, algorithm for defuzzification etc. Fuzzy 

traversals of fuzzy hypergraphs, coloring of fuzzy 

hypergraphs and strongly interconnected 

hypergraphs were detailed in [3]. Further α – β cut [4] 

on IFHG, incidence matrix of Hα – β and the dual IFHG 

were introduced. The authors further propose to 

show the importance of α – β cut in graph 

partitioning. Operations like complement, join, union, 

intersection, ringsum, cartesian product, composition 

are defined for intuitionistic fuzzy graphs [5], where 

the authors further proposed to apply these 

operations in clustering techniques. Isomorphism 

between two intuitionistic fuzzy directed 

hypergraphs (IFDHG) is also discussed [6], where the 

authors have introduced IFDHG, its order, in-degree, 

out-degree, homomorphism, weak isomorphism and 

co-weak isomorphism between two IFDHGs. 

Application of IFHG in radio coverage network is also 

suggested by [7], in which their model can be used to 

determine station programming and develop 

marketing strategies. The authors also suggested the 

use to IFHG for clustering computer networks. An 

application with Intuitionistic Fuzzy sets for career 

choice[8] which is a decision making system was 

developed where the system represented the 

performance of students using membership μ, non 

membership υ and hesitation margin п. They applied 

normalized Euclidian distance to determine the apt 

career choice.  

 

Few properties of strong IFHGs [9] were discussed 

and generalized strong spanning IFHG was also 

introduced. The authors have considered the 

interrelation between intuitionistic fuzzy vertex and 

family of intuitionistic fuzzy edges. Morphological 

operations [10] like dilation, erosion and adjunction 

on hypergraphs were done. The same authors have 
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also done opening, closing, half opening and half 

closing and morphological filtering [11] on 

hypergraphs. Intuitionistic fuzzy transversal [12] of 

IFDGH was done in which they also introduced 

minimal transversal, transversal of union of IFDGHs, 

also their intersection, join structural subtraction, 

cartesian product and composition. Different types of 

IFDHGs including core, simple, elementary, sectional 

elementary IFDHGs, (μ; υ)-tempered IFDHGs [13], 

properties of (μ;υ)- tempered IFDHGs were also 

implemented.  

 

This paper is organized as follows: Section 

2(Background) defines an intuitionistic fuzzy 

hypergraph with its membership and non 

membership degrees. Section 3 (Algebra of graph 

morphology) introduces the hypergraph algebra on 

dilation operation. Section 4(De Morgan’s law applied 

to IFHG) test and proves De Morgan’s law 

considering dilation of subgraphs. Section 5 

(Conclusion) is the concluding part where some 

applications and future work is mentioned and finally 

the references are included. 

 

II.  BACKGROUND 

 

Let [HIF , (μn , γn), (μe , γe), Hn, He ] be an intuitionistic 

fuzzy hypergraph with membership degree μn and 

non membership degree γn defined on the set of 

hypernodes Hn and membership degree μe and non 

membership degree γe defined on a set of hyperedges 

He of HIF . The sum of the membership degree and 

non membership degree of the hypernode is 1 [4]. ie, 

μn + γn = 1. So also the sum of the membership degree 

and non membership degree of the hyperedge is 1 [4]. 

ie, μe + γe = 1 .If all the hypernodes in a hyperedge has 

μn > 0.5, then μe  is the supremum of all μ n in that 

edge. In such a case γn = 1 - μn. If there is at least one 

hypernode with γn > 0.5, then the γe of that edge is 

the supremum of all γn in that edge.  In such a case μe 

= 1 - γe.  Many morphological operators like dilation 

with respect to hypernodes, with respect to 

hyperedges, erosion with respect to hypernodes and 

erosion with respect to hyperedges can be defined 

once we have a sub hypergraph XIF.  

Let XIF and YIF be two sub hypergraphs of HIF. We can 

define them as [XIF , (μn’ , γn’ ) , (μe’ , γe’), Xn , Xe ] and 

[YIF , (μn’ , γn’ ) , (μe’ , γe’), Yn , Ye].  Let XIF be obtained 

as a result of α – β cut on HIF. ie, XIF = H α – β where m 

< α <= n and β = 1- α . Here α corresponds to the edge 

membership degree and β corresponds to the edge 

non membership degree. Let YIF be obtained as a 

result of another α – β cut on HIF. ie, YIF = H α – β 

where α >= n and β = 1- α. Here morphological 

dilation is represented using the operator δ. In this 

paper we are going to introduce many algebraic 

operations on morphological dilation. 

 

III. ALGEBRA OF HYPERGRAPH MORHOLOGY 

 

     Let us assume m = 0:5; n = 0:8. ie, XIF is a sub 

hypergraph which consists of edges with membership 

degree greater than 0.5, but less than or equal to 0.8. 

ie, XIF = H α – β /0:5 < α <= 0:8 ; β = 1- α. Also YIF = H α – 

β / α >= 0:8; β = 1- α. ie, both XIF and YIF are two 

priority sub hypergraphs with different cut offs. Our 

actual HIF  is having many non priority nodes whose μ 

n  < 0.5 and medium level nodes whose μ n = 0.5. The 

hypergraphs HIF, XIF and YIF  are shown in Fig.1.  

 

Figure 1 :  (a) Hypergraph HIF, (b) XIF and (c) YIF 

The following results hold for the above mentioned 

sub hypergraphs. 

Definition 3.1 Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on 

hypergraph. Then node dilation of X  Y is defined as  

δ
n
(X  Y)

e
 = δ 

n (X
e 
)   δ n

 (Y
e
)                               (1) 
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Proof: Consider the union operation of two IFHG sub 

hypergraphs X and Y, where X and Y are defined as in 

previous section. In L.H.S of (1), consider X  Y = (Z
n
, 

Z
e
) where Z

n
 = X

n
  Y

n
 and Z

e
 = X

e
  Y

e
 and the 

union operation is same as the operation on graph. 

 

 δ
n
(XY)

e 
=  Z

n
                                                        (2)  

by definition of δ 
n  

[10] 

 

Also δ
n (X

e
) = X

n 
and δ n

 (Y
e
) = Y

n 

 

δ
n (X

e 
)   δ

n
 (Y

e
) = X

n 
 Y

n 
 = Z

n                              (3) 

 

From eq(2) and eq(3), it implies  

δ
n
(X  Y)

e
 = δ

n
(X

e 
)   δ

n
(Y

e
). Fuzzy membership and 

non-membership degrees are invariant under this 

equation. The result of this operation is shown in Fig. 

2 .(a). As seen in the figure, this dilation operation 

will retrieve all nodes within the priority sub graphs. 

Since the graphs are of higher priority, the 

hypernodes retrieved are also of high priority.  

 

Figure 2 :  (a) δ 
n
(X  Y)

e       
( b)

    
δ

e
(X  Y )

n
 

Example 3.1 : Consider H = (Hn, He) as an IFHG. Hn = 

{n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12} be the 

hypernodes in H. Let He = {e1, e2, e3, e4, e5, e6} be the 

hyperedges in H. Let X be a sub hypergraph, where X 

= (Xn, Xe); where Xn  = { n7, n8, n10, n11} and Xe  = {e5} . Let 

Y be a sub hypergraph, where Y = (Yn, Ye ) ;where Yn  

= {n8, n9, n11, n12 } and Ye  = {e6}. The membership 

degree and non membership degree of the 

hypernodes and hyperedges of hypergraph H are 

given as per the Table I. Here we have set X = H α – β / 

0.5 < α <=0.9; β = 1 – α. Also Y = H α – β / α >= 0.9; β = 1 

– α. 

TABLE I. DETAILS OF HYPERGRAPH H 

Hyper Edges Membership and non membership degrees Edge 

priority 
                  Hyper nodes 

e1 

( 0.4,0.6) 

n1 

(0.5,0.5) 

n2 

(0.5,0.5) 

n3 

( 0.4,0.6) 

n4 

(0.5,0.5) 

low 

e2 

( 0.5,0.5) 

n2 

(0.5,0.5) 

n4 

(0.5,0.5) 

n5 

(0.5,0.5) 

n6 

(0.5,0.5) 

medium 

e3 

( 0.4,0.6) 

n3 

(0.4,0.6) 

n4 

(0.5,0.5) 

n7 

(0.6,0.4) 

n8 

(0.8,0.2) 

low 

e4 

( 0.9,0.1) 

n4 

(0.5,0.5) 

n8 

(0.5,0.5) 

n6 

(0.5,0.5) 

n9 

(0.9,0.1) 

high 

e5 

( 0.8,0.2) 

n7 

(0.7,0.3) 

n10 

(0.5,0.5) 

n8 

(0.5,0.5) 

n11 

(0.6,0.4) 

high 

e6 

( 0.9,0.1) 

n8 

(0.5,0.5) 

n9 

(0.9,0.1) 

n11 

(0.8,0.2) 

n12 

(0.9,0.1) 

high 

 

The result of the operation δ 
n
(X  Y)

e   is
   

Z
n 

= {n7, n8, n9, n10, n11, n12}. Also same results are 

obtained from δ
n
(X

e
) δ

n
(Y

e
) ie, {n7, n8, n10, n11}  { n8, 

n9, n11, n12 } = { n7, n8, n9, n10, n11, n12 } = Z
n
. Here the proof 

is substantiated with the above example. 

Definition 3.2: Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on 

hypergraph. Then edge dilation of X  Y is defined as  
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δ
e
(X  Y)

n
 = δ

e
 (X

n
)   δ

e
(Y

n
)                               (4) 

Proof:  In L.H.S of eq(4), δ
e
(X  Y)

n
  is the collection 

of all edges which contain hypernodes of X  Y. As 

shown in Fig. 2(b), it consists of edges which are of 

priority and also of non priority. This is because; the 

hypernodes of sub graphs X and Y are also part of 

other hyperedges which are of medium priority or 

low priority. Here we can see that all the edges 

retrieved by this dilation consist of at least one node 

of high priority. All other edges are discarded in this 

operation. 

δ
e 
(X  Y )

n
 = Z

e
                                                     (5) 

 

In R.H.S of eq(4), δ
e 
(X

n
) = X

e  
 and δ

e
(Y

n
) = Y

e
  

 

Hence 

δ
e 
(X

n
)   δ

e
(Y

n
) = X

e 
 Y

e 
 = Z

e
                             (6) 

 

From eq(5) and eq(6), it implies that  

δ
e 
(XY)

n
  = δ e

(X
n
)   δ e

(Y
n
) 

 

Example 3.2: Consider the same problem defined in 

example 3.1. Applying it in L.H.S of eq(4), we get 

(XY)
n
 ={n7, n8, n9, n10, n11, n12}. Now δ

e
(XY)

n
  = { e3, e4, 

e5, e6 }. Considering R.H.S, we get δ
e 
(X

n
) = {e3, e4, e5, e6} 

and δ
e
(Y

n
) = { e3, e4, e5, e6 }. Now δ

e 
(X

n
)   δ

e 
(Y

n
) = {e3, 

e4, e5, e6}. 

Definition 3.3: Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on 

hypergraph. Then node dilation of XY is defined as  

 δ
n
(X  Y)e = δ

n
(X)e  δ

n
(Y)e                                            (7) 

 

Proof:  Let X = H - X, Y = H - Y, X = (Xn, Xe), Y = 

(Yn , Ye ). Let (X  Y)e be the set of all hyperedges 

not in X  Y, where X  Y = Z. Also Znand Ze are 

the hypernodes and hyperedges of Z. Hence 

 

δ
n
 (X  Y)e = Zn                                                                             (8) 

                  

Also 

δ
n
 (X)

e
  δ

n
(Y)

e
 = Xn  Yn                                                  (9) 

                                                                                  

From eq(8) and eq(9), it implies that  

δ
n
(XY)

e
= δ

n
(X)

e  δ 
n
(Y)

e .Here (X Y)
e   retrieves 

all edges which are of high medium and low 

priority ,so also the dilation operation  δ
n
(X  Y)

e   

retrieves all nodes within these high, medium and 

low priority hyperedges. The same is shown in Fig.3 

(a) 

 

 

Figure 3:  (a) δ
n
(XY)

e
     (b)

    
δ

e
(XY)

n
 

 

Example 3.3. Considering L.H.S of eq(7), we obtain 

(XY)
e 
= {e1, e2, e3, e4, e5, e6}. From that we get 

δ
n 

(XY)
e 
= { n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, n12}. 

Considering R.H.S, we get δ
n
(X)

e  
= { n1, n2, n3, n4, n5, n6, 

n7, n8, n9, n11, n12}. Also δ
n
(Y)

e  
= { n1, n2, n3, n4, n5, n6, n7, 

n8, n9, n10, n11}. Now δ
n
(X)

e  δ 
n
(Y)

e 
={ n1, n2, n3, n4, n5, 

n6, n7, n8, n9, n10, n11, n12}. 

 

Definition 3.4: Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on 

hypergraph. Then edge dilation of XY is defined as  

δ
e
(X  Y) n = δ e (X)n    δ e

 (Y)n                                (10) 

 

Proof: Let X = H - X, Y = H - Y, X = (Xn, Xe) , Y = 

(Yn, Ye) . (X  Y)n  be the set of all hypernodes not 

in X  Y , where X  Y = Z. Also Zn and Ze  are the 

hypernodes and hyperedges of Z. Hence 

δ
e
 (X  Y)n  = Ze                                                                        (11)                                                                                                                               

Also 
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δ
e
 (X)n    δ

e
 (Y)n = Xe    Ye                        (12) 

                                                               

From eq(11) and eq(12), it implies that  

δ
e
 (X  Y)n = δ e

 (X)n    δ
e
 (Y)n . 

This dilation operation will retrieve all edges which 

are of high, medium priority and low priority. The 

same is shown in Fig.3(b). 

 

Example: Considering L.H.S of eq(10), we obtain the 

result   (X  Y) n 
={n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11, 

n12}. Now δ
e
(X  Y)n  = {e1, e2, e3, e4, e5, e6}. Consider 

R.H.S, where δ
e
(X)n  = {e1, e2, e3, e4, e6}. Now δ

e
(Y)n  =  

{e1, e2, e3, e4, e5}. From this we get δ
e
(X)n    δ

e
 (Y)n  = 

{e1, e2, e3, e4, e5, e6}. 

 

Definition 3.5: Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on 

hypergraph. Then node dilation of X  Y is defined as  

    δ
n
 (X  Y)

e
 = δ

n
 (X

e
)  δ

n
 (Y

 e
)                        (13) 

    provided there are common edges in X and Y. 

 

Proof: Consider the intersection operation of two 

IFHG sub hypergraphs X and Y, where X and Y are 

defined as in previous section. In L.H.S of eq(13), 

consider X  Y = (Z
n
, Z

e
) where Z

n
 = X

n
   Y

n
 and Z

e
 

= X
e
   Y

e
 and the intersection operation is same as 

the operation on graph. 

 

δ
n 
(XY)

e 
= Z

n 
                                               (14)                                                                                         

by definition of δ 
n
   

 

Also δ 
n
 (X

e
) = X

n  
 and δ 

n
 (Y

 e
) = Y

n
 

 

δ
n
(X

e
)δ

n
(Y

e
) = X

n
Y

n 
= Z

n
                          (15)                                                            

 

Eq(13) is implied from eq(14) and eq(15) . Fuzzy 

membership and non membership degrees are 

invariant under this equation. The resultant graph is 

shown  in Fig . 4(a). This dilation will retrieve only 

the priority hypernodes which are found both in X 

and Y. 

 

Example 3.5. Since this is true only if there are 

common edges in X and Y, let us modify X by 

including a common edge with Y so that now new 

X=(X
n
 , X

e
 ), where X

e
 = {e5, e6} and X

n
 ={n7, n8, n9, n10, 

n11, n12}.Consider the result of L.H.S of eq(13), where 

we get (X  Y)
e
 = {e6}, so we get δ

n
(X  Y)

e 
= {n8, n9, 

n11, n12}.   Consider R.H.S, where we get δ
n
(X

e
) = {n7, n8, 

n9, n10, n11, n12} and δ 
n
(Y

 e
) = { n8, n9, n11, n12}.  Definition 

3.5 is proved with the result  δ
n
(X

e
)  δ

n
(Y

 e
) = {n8, n9, 

n11, n12}.    

     Definition 3.6: Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on 

hypergraph. Then edge dilation of X  Y is defined as  

      δ
e
(X  Y)

n
 = δ

e
 (X

n
)  δ 

e
 (Y

n
)                                 (16) 

 

Proof: In L.H.S of eq(16), (X  Y)
n
  is the collection of 

all hypernodes in X  Y. ie, 

 

δ 
e
(X  Y)

n   is the collection of all  hyperedges  which 

contains these  hypernodes. 

δ
e
 (X  Y)

n
  = Z

e 
                                                 (17)                                                                                       

 

In R.H.S of eq(16), δ
e
 (X

n
)  = X

e  
 and δ

e
 (Y

n
) = Y

 e
 

Hence 

 

δ
e
 (X

n
)  δ

e
 (Y

n
) = X

e 
  Y

 e
  = Z

e                                  
(18) 

Eq(16) is implied from eq(17) and eq(18). 

 

 

     Figure 4:  (a) δ
n
 (X  Y)

e
   (b)

    
δ

e
 (X  Y)

n
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The same result is shown in Fig .4(b). As we see in 

the figure, not all edges are of high priority. It 

retrieves all kinds of edges. But it ensures that at 

least one hypernode in that edge is of high priority. 

Example 3.6: Consider the X and Y mentioned in 

example 3.1. In L.H.S of eq(16), while we get (X  

Y)
n
   = {n8, n9}, we get δ

e
(X  Y)

n
   = {e3, e4, e5, e6}. 

Considering R.H.S of eq(16), we obtain δ
e
 (X

n
) = {e3, 

e4, e5, e6}; δ
e
(Y

n
) = { e3, e4, e5, e6}. Now δ

e 
(X

n
)  

δ
e
(Y

n
)={e3, e4, e5, e6}. 

Definition 3.7: Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on 

hypergraph. Then node dilation of X  Y is defined 

as 

δ
n
 (X  Y)

e = δ
n
 (X)

e
  δ

n
 (Y)

e                                       (19) 

provided there common edges in X and Y. 

 

Proof: Let X = H - X, Y= H - Y, X = (Xn, Xe), Y = 

(Yn , Ye ).  Let (X  Y)e be the set of all hyperedges 

not in X  Y, where X  Y =Z. Also Zn  and Ze   are 

the hypernodes and hyperedges of Z . Hence 

 

δ
n
 (X  Y)e = Zn                                                 (20) 

Also 

δ
n
 (X)

e
  δ 

n
 (Y)

e
 =  Xn    Yn                           (21)                                                            

 

Eq(19) is implied from eq(20) and eq(21). 

Resultant graph obtained is shown in Fig 5(a) 

 

 

Figure 5:  (a) δ 
n
 (X  Y)

e     (b) δ
n
(X  Y)

e 

 

Example 3.7 .Let us consider the modified X = (X
n
, X

e
), 

where X
e
 = {e5, e6} and X

n
 ={n7, n8, n9, n10, n11, n12}.Now 

in L.H.S of eq(19), we get (X  Y)e  = {e1, e2, e3, e4}.  

Now δ
n
(X  Y)

e 
={n1, n2, n3, n4, n5, n6, n7, n8, 

n9}.Consider R.H.S ,where we get δ
n
 (X)

e 
= {n1, n2, n3, 

n4, n5, n6, n7, n8, n9}. δ
n
(Y)

e   
={n1, n2, n3, n4, n5, n6, n7, n8, n9, 

n10, n11}. Thus δ
n
 (X)

e
  δ

n
 (Y)

e  
=

 
{n1, n2, n3, n4, n5, n6, n7, 

n8, n9}. 

 

Definition 3.8: Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on 

hypergraph. Then edge dilation of X  Y is defined 

as 

δ
e
 (X’  Y’)

n
 = δ

e
 (X’)

n
   δ 

e
 (Y’)

n                                   (22) 

 

Proof: Let X = H - X, Y = H - Y, X = (Xn,  Xe ) 

, Y = (Yn, Ye). Let (X  Y)
n
 be the set of all 

hypernodes not in X  Y , where X  Y’= Z’. Also Zn 

and Ze are the hypernodes and hyperedges of Z. 

Hence 

 

δ
e
 (X  Y)

n
 = Ze                                                  (23)                                                                                      

Also 

δ
e
 (X)

 n    δ 
e
 (Y)

n
  = Xe  Ye                                           (24) 

                                                                                                        

 Eq(22) is implied from  eq(23) and eq(24).The 

resultant graph is shown in Fig.5(b). 

 

Example 3.8.Take X and Y defined in example 3.1. 

Applying it in eq(22), we get (X  Y)
n =

 
{n1, n2, n3, n4, 

n5, n6, n7, n8, n9}. So δ
e
 (X  Y)

n   ={ e1, e2, e3, e4, e5, e6}. δ
e
 

(X)
 n  ={ e1, e2, e3, e4, e5, e6}. Also δ

e
 (Y)

n  = {e1, e2, e3, e4, e5, 

e6}. Thus δ
e
 (X)

n    δ
e
 (Y)

n   ={ e1, e2, e3, e4, e5, e6}.  

 

3.9.1: Generalized associative law for union 

Proposition 1. Let X1, X2, X3……. Xn be the sub 

hypergraphs of HIF. Let δ be the node dilation operator 

defined on X1 , X2, X3……. Xn, then  

δ
n
(X1  X2  X3 … Xn)

e
 = δ 

n
(X1

e   X2
e  … Xn

e )   (25)                                              
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The proof follows from definition 3.1 

 

Similary the edge dilation on (X1  X2  X3 … Xn) is  

 

δ
e
(X1  X2  X3 …Xn)

n
 = δ

e
 (X1

 n   X2
 n  … Xn 

n
)    (26)                             

 

The proof follows from definition 3.2. 

 

     3.9.2: Generalized associative law for intersection 

Proposition 2. Let X1, X2, X3……. Xn be the sub 

hypergraphs of HIF. Let δ be the dilation operator, then 

node dilation on (X1  X2  X3 …Xn) is  

 

δ
n
(X1  X2  X3 …Xn)

e
 = δ

n
(X1

e   X2
e  ……. Xn 

e )   (27) 

                                                 

The proof follows from definition 3.5 

 

Similary the edge dilation on (X1  X2  X3 …Xn) is 

 

δ
e
(X1  X2  X3 …Xn)

n
 = δ

e
(X1

n   X2
 n  …… Xn 

n
)    (28) 

                                    

The proof follows from definition 3.6 

 

3.9.3: Distributive law 

Proposition 3. Let X, Y and T be three sub 

hypergraphs of HIF. Then 

δ 
n
((X  Y )  T)

e
 = δ 

n
(X  T)

 e
  δ 

n
(Y T)

 e
   (29)                                       

The proof follows from definition 3.1 and definition 

3.5. 

 

IV. DE MORGAN’S LAW APPLIED TO IFHG 

 

4.1: De Morgan’s law applied to dilation with respect 

to hypernode considering union of subgraphs  
 

Proposition 4 .Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on hypergraph, 

then 
 

δ 
n

(X  Y )
 e

 = δ
n

(X)
e

  δ 
n

 (Y)
e

                         (30)                                                                

 

provided there are edge(s) in X  Y. 

Proof: (X  Y)
 

 be the sub hypergraph with edges 

which are not present in X  Y. 

Let (X  Y )
 e

  be the edges in that hypergraph . Hence 

δ
n

(X  Y)
 e

 is the set of all hypernodes in the sub 

hypergraph (X  Y)
 

. Let it be Z
n
. Also δ

n

 (X)
e

  = set 

of all hypernodes in X, δ
n

 (Y)
e

 = set of all hypernodes 

in Y. Let v be an arbitrary node in δ
n

(X  Y)
 e 

, which 

implies that v belongs to δ
n

(X)
e

 and v belongs to δ 
n

(Y)
e

.  

 

Hence 

δ 
n

(X  Y )
 e

  δ 
n

 (X)
e

   δ 
n

 (Y)
e

                 (31)                                                               
 

Let v belongs to δ
n

 (X)
e

   δ
n

 (Y)
e

    which implies that 

v belongs to X and v belongs to Y. Hence v X and v 

 Y. 

 

v  X  Y  

 

X  (X  Y)  

 

δ
n

 (X)
e

   δ
n

 (Y)
e

      δ
n

(X  Y )
 e                         

(32)
                                                                          

  

 

Eq (30) implied from Eq(31) and Eq(32) . 

 

Example 4.1. Consider the hypergraph HIF given in 

Table I(also shown in Fig 6(a)). Let X be a sub 

hypergraph X = (X
n

 , X
e

), where X
e

 = { e5, e6} and X
n

 

={n7, n8, n9, n10, n11, n12}. Let Y be another sub 

hypergraph such that Y = (Y
n

, Y
e

), where Y
e 

={e6}, 

Y
n

={n8, n9, n11, n12}. Considering L.H.S of eq (30) we 

get, (X  Y)
 e 

= {e1, e2, e3, e4}. Now δ 
n

(X  Y)
 e  

= {n1, 

n2, n3, n4, n5, n6, n7, n8, n9}. Considering R.H.S of eq (30) 

we get, δ
n

 (X)
e

   = {n1, n2, n3, n4, n5, n6, n7, n8, n9}. Also δ
n

 

(Y)
e

    = {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11}. Thus we 

get δ
n

 (X)
e

  δ
n

 (Y)
e

  ={n1, n2, n3, n4, n5, n6, n7, n8, n9} as 

shown in Fig 6(b). 

 

 
    Figure 6:(a) H   6(b)

 

,6(c)
 

,6(d) ,6(e) – Results of De Morgan’s law
  

 

 

4.2 : De Morgan’s law applied to dilation with 

respect to hyperedge considering union of subgraphs. 

Proposition 5. Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on hypergraph, 

then 
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δ
e

 (X  Y )
n
 = δ

e

 (X)
n
   δ

e

 (Y)
n                                         

(33) 

 
 
provided there are edge(s) in X  Y. 

                                                                                 
 

Proof: Let (X  Y) be the sub hypergraph with edges 

which are not present in X  Y. Let (X  Y)
n
 be the 

nodes in that hypergraph . Hence δ
e

 (X  Y ) 
n
 is the set 

of all hyperedges which include such nodes. Let it be Z
e
. 

Also δ
e

(X)
 n

 = set of all hyperedges in X , δ 
e

 (Y)
 n

 = 

set of all hyperedges in Y. Let v be an arbitrary node in 

δ
e

(X  Y)
n
, which implies that v belongs to δ

e

(X)
n
  and 

v belongs to δ
e

 (Y)
n 
. Hence 

 

δ
e

 (X  Y )
n
   δ

e

 (X)
n

   δ
e

(Y)
 n                                    

(34) 
 
Let v belongs to δ

e

 (X)
 n

   δ
e

 (Y)
 n

 which implies that 

v belongs to X and v belongs to Y. Hence v X and v 

 Y . 

 

v X   Y  v  (X  Y )  

 

 δ
e

(X)
n
   δ

e

(Y)
n    
  δ

e

(X  Y ) 
n
                   (35)                                                       

Eq (33) is implied from Eq(34) and Eq(35) . 

 

Example 4.2. Consider the hypergraphs given in 

example 4.1. Considering L.H.S of  eq (33) we get ,  

(X  Y)
n 
= {n1, n2, n3, n4, n5, n6, n7, n8, n9}. Thus we get 

δ
e

(X  Y)
n 
 = {e1, e2, e3, e4, e5, e6}.  Considering R.H.S of 

eq(33), we get δ
e

(X)
n

 = {e1, e2, e3, e4, e5, e6} and δ
e

(Y)
 n 

  

={e1, e2, e3, e4, e5, e6}. Thus δ
e

(X)
n

  δ
e

(Y)
n 
= {e1, e2, e3, e4, 

e5, e6}as shown in Fig 6(c). 

 

4.3: De Morgan’s law applied to dilation with respect 

to hypernode considering intersection of subgraphs 

 

Proposition 6. Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on hypergraph, 

then 

     δ
n

(XY)
e

=δ
n

(X)
e

δ
n

(Y)
e

                                  (36)  

 

provided there are edge(s) in X   Y                                                                       

 

Proof: Let (XY)  be the hypergraph with edges which 

are not present in X Y. Let (X  Y)
 e

 be the edges in 

that hypergraph. Let δ
n

(X  Y)
e

  be the set of all nodes 

in the Sub hypergraph (X  Y). Let v be a node in δ
n

(X 

 Y)
 e

, then it is not a node of X  Y ie v  X  Y.  

 

δ
n

(XY)
e

 X  Y                                                  (37)                                                                         

 

Also δ
n

(X)
e

   is the set of nodes in X  as in fig .2. Also 

δ
n

(Y)
e

  is the set of nodes in Y . Let v belongs to 

δ
n

(X)
e

  δ
n

(Y)
e

 which implies that v either belongs to 

any node in X  or v belongs to any node as given in ie, 

v  X  Y. 

δ
n

(X)
e 

  δ
n

(Y)
e

 X  Y                                       (38)                                                                     

 

Eq(36) is implied from eq(37) and eq(38). 
 

Example 4.3. Consider the hypergraphs given in example 

4.1. Considering L.H.S of  eq (36) , we get (XY)
e

= 

{e1, e2, e3, e4, e5}.  δ
n

(XY)
e 

= {n1, n2, n3, n4, n5, n6, n7, n8, 

n9, n10, n11}. Now consider R.H.S , where we get  

δ
n

(X)
e 

= {n1, n2, n3, n4, n5, n6, n7, n8, n9}.  δ
n

(Y)
e 

= {n1, n2, 

n3, n4, n5, n6, n7, n8, n9, n10, n11}.  Now δ
n

(X)
e 

 δ
n

(Y)
e  

= 

{n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11} as shown in Fig 6(d). 

 

4.4: De Morgan’s law applied to dilation with respect 

to hyperedge considering intersection of sub graphs 

 

Proposition 7. Let X and Y be the sub hypergraphs of 

HIF and δ be the dilation operator defined on hypergraph, 

then 

 

δ
e

 (X  Y )
n
  = δ

e

 (X)
n

    δ
e

 (Y)
n

                  (39) 

  

provided there are edge(s) in X   Y .                                                                     

                                                   

Let (X  Y)  be a hypergraph with nodes which are not 

present in X  Y. Let (X  Y)
n
 be the nodes in that 

hypergraph. Let δ
e

(X  Y)
n
  be the set of all edges in 

the sub hypergraph (X  Y). Let e be an edge in δ
e

(X 

 Y)
n
  , it is not an edge of X  Y . ie, e   X  Y . 

 

δ
e

(X  Y ) 
n
     X  Y                                     (40)                                                                               

Also δ
e

(X)
n

  is the set of all edges in X. Also δ
e

(Y)
n

  is 

the set of all edges in Y.Let e belongs to δ
e

(X)
n

  

δ
e

(Y)
n 

; which implies that e either belongs to X or Y. 

ie, e   X  Y . 

 

δ
e

(X)
n

    δ
e

(Y)
n

    X  Y                              (41)                                                                  

 

Eq(39) is implied from eq(40) and eq(41). 

 

Example 4.3. Consider the hypergraphs given in 

example 4.1. Considering L.H.S of  eq(39) we get, δ
e

(X 

 Y)
n
  = {e1, e2, e3, e4, e5, e6}.  Consider R.H.S of eq(39) 

where we get δ
n

(X)
e 

= {e1, e2, e3, e4, e5, e6}.  Now δ
e

(Y)
n

  

= {e1, e2, e3, e4, e5, e6}.  Thus δ
e

(X)
n

  δ
e

(Y)
n

  = {e1, e2, e3, 

e4, e5, e6} as shown in Fig 6(e). 
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V. CONCLUSION 

 

The paper has proved algebraic operations applied to 

the morphological operation dilation applied to IFHG. 

The proofs are also substantiated with a sample 

hypergraph and sub hypergraphs considering their 

node and edge membership and non-membership 

degrees. This type of modeling finds applications in 

the area of computer networks, image processing and 

text processing. The algebra of morphological erosion 

is a future enhancement of this paper. 
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